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A turbulent bore on a beach 
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(Received 1 September 1982 and in revised form 2 April 1984) 

A theoretical model is developed giving a moderately detailed description of the flow 
in a turbulent bore, the velocity profiles, the shear stresses, the energy dissipation, 
etc. An analysis of the flow conditions a t  the toe of the turbulent front indicates 
significant differences from the usual description based on the finite-amplitude 
shallow-water equations, and it is shown that the present model gives a closer 
description of the actual physical conditions. Finally, numerical results are presented 
that illustrate how the model works, and test its validity on an example with known 
properties. 

1. Introduction 
Hydraulic jumps and bores propagating in a constant depth of water are in most 

respects equivalent flow phenomena. I n  a proper frame of reference, these flows 
become steady, which greatly simplifies the analysis. For the bore this means a 
reference frame moving with the speed of propagation of the bore. 

Madsen & Svendsen (1983) (hereinafter designated I) presented a model for these 
cases. It included a description of the turbulence and the flow field which made it 
possible to describe the free-surface variation, the internal shear stresses, the energy 
dissipation, etc. The model was restricted to steady flow (which, in the case of a bore, 
corresponds to  assuming a permanent form), and therefore turned out to be quite 
simple. I n  the formulation chosen, four dependent variables were used, which made 
it possible to  satisfy depth-integrated versions of the continuity, momentum and 
energy equations, and in addition the momentum equation integrated over the 
turbulent region only. The situation is shown in figure 1 .  

I n  the present paper this model is generalized by omitting the assumption of 
permanent form. Hence we are now aiming at describing, for example, a bore 
propagating over an (arbitrarily) varying depth of water, or analysing in a fixed frame 
of reference a bore of permanent form propagating in a constant depth of water. 
Although the latter example is physically identical with the bore studied in I, the 
mathematical differences are quite drastic. I n  I the four equations required were three 
algebraic equations and one first-order ordinary differential equation. The same 
physical model for the propagating bore in a fixed frame of reference will in the 
following be shown to be represented by a hyperbolic system of four simultaneous 
partial differential equations. 

If turbulence is omitted from this description, the four equations reduce to the two 
well-known finite-amplitude shallow-water equations (SWE), which, in fact, is the 
system normally used in the literature for analysing propagating bores and breaking 
waves. Hence the model equations derived in the following can be considered an 
extension of the classical SWE to include the effect of turbulence. 

t Present address : Danish Hydraulic Institute, Herrsholm DK-2970, Denmark. 
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FIGURE 1. Sketch of the flow pattern in a turbulent bore: -.-, lower limit 
of the turbulent region; ---, mean streamlines. 

In  our formulation we restrict ourselves to the turbulence generated by fronts on 
the free surface. The descriptions may well be extended to include bottom boundary 
layers, but no such attempt was made here. 

As in I we assume that the horizontal lengthscale is much larger than the vertical 
lengthscale, which in I was shown to imply that deviations from hydrostatic pressure 
could be neglected in the momentum balance. 

Here it is worth recalling that in the BWE the pressure is also hydrostatic, and 
this in combination with a uniform distribution of horizontal velocity components 
yields solutions for which the front side of any positive wave or bore is constantly 
steepening (see e.g. Peregrine 1972), in principle until a vertical face is reached. 

The reason for this development can be seen by considering a constant-depth bore 
in a reference frame following the bore. If we assume uniform velocities and hydro- 
static pressure the total momentum flux a t  any point of the bore is 

M ,  = ( F + $ d 2 ) p ,  

in which Q, is uld, ,  u1 being the speed of propagation of the bore and d, the 
undisturbed depth. 

For a bore of permanent form this momentum flux should be constant through the 
bore and equal to the value at the toe, which, obviously, is not possible in (1.1) since 
Q is constant and only d is varying. In  fact, M ,  only attains the toe-value (namely 
pgd:(F:+:), Ff = u:/gdl) at one other ‘point ’, namely far behind the bore. At points 
in between, M ,  is smaller, and it is in order to compensate for this momentum flux 
deficit that the SWE wave steepens. 

This prebreaking steepening of the wave front has been studied by the method of 
characteristics (see e.g. Shen & Meyer (1963) for a bore, and Jeffrey (1964) and Burger 
(1967) for waves), and breaking is then usually defined to occur where characteristics 
intercept. The time required for a given initial wave profile to develop to this point 
is among the results. 

When the surface is approaching the vertical, however, the approximations 
underlying the SWE will no longer be satisfied (see e.g. Peregrine 1972). In real bores 
the steepening of the front will either cause the bore to become undular (the case 
of weak bores) or (for stronger bores) turbulent breaking will develop. 

I n  the latter case, which we are interested in here, the water tumbling down the 
front face produces strongly non-uniform velocity distributions which represent an 
increase in momentum flux, in particular where the front is steep. If the momentum 
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flux is not sufficiently enhanced by the breaking, the front will steepen further, which 
intensifies the breaking and further increases the non-uniformity of the velocity 
distributions, until the front eventually becomes quasi-stable. In  other words, the 
breaking tends to stabilize the shape of the front. 

In  frequency-dispersive irrotational waves (as e .g. described by the Boussinesq 
equations) a similar stabilization of the surface profile is obtained by the deviations 
from hydrostatic pressure. This mechanism was analysed closely by Peregrine (1966). 
To be of significance, however, this requires an appreciable curvature on the surface 
profile. What the above mentioned analysis in I of the pressures indicates is that  in 
bores and hydraulic jumps this effect (apart from having the wrong sign in most of 
the flow region!) is far less important than the effect of the non-uniform velocity 
profiles caused by the breaking. Hence the stable fronts of bores and hydraulic jumps 
are caused, not by deviations from hydrostatic pressure (although the pressure is not 
quite hydrostatic) as in frequency-dispersive waves, but primarily by the turbulent 
breaking. 

This is also consistent with the fact that  if non-hydrostatic pressures become 
important (as in an undular bore) breaking normally ceases. In  this case vanishing 
dissipation is then replaced by energy propagation away from the front by the trailing 
wave system (Benjamin & Lighthill 1954; Wilkinson & Banner 1977). 

One method of obtaining numerical solutions to bores and breakers using the SWE 
is to replace the front by a discontinuity in the variables, supplemented by jump 
conditions that conserve mass and momentum across the discontinuity but dissipate 
energy (see e.g. Whitham 1958; Keller, Levine & Whitham 1960; Meyer & Taylor 
1972). 

Another approach uses a dissipative numerical scheme, usually of the type 
suggested by Lax & Wendroff (1960). In  such schemes the shape of the front is frozen 
to cover a small number of computation points. Hibberd & Peregrine (1979) applied 
this method to a uniform bore on a beach, and Packwood (1980) studied periodic bores 
on a beach using measured surface variations as input a t  the seaward boundary. 

An advantage of these methods is that they are relatively simple to use and can 
handle quite general problems. None of them, however, gives any information about 
the shape and structure of the front itself, and, as we shall see, this does influence 
properties such as the propagation speed. 

Hence a major purpose of the present paper is to analyse the development of the 
front in a turbulent bore. The basic equations are formulated in 552 and 3, the latter 
section describing the turbulence model. Since in addition to the four differential 
equations mentioned above a number of side constraints are needed, the computational 
procedure is outlined in 54. 

The initial condition is taken to be still water over a horizontal or sloping bottom 
(uniformly sloping in the numerical examples), and the bore enters the region of 
computation by the boundary condition specified a t  the seaward boundary, which 
is placed at some distance seaward of the slope. 

An important detail is then the flow at the toe of the front. A Taylor expansion 
is used to investigate the nature of the discontinuities occurring there. Heuristic 
physical arguments indicate that a t  the toe discontinuities occur not only in the 
derivatives of the dependent variable, but also in the dissipation of mean-flow energy, 
which becomes finite right behind the toe. The latter changes the equations at  a 
crucial point relative to  the SWE (336 and 7 ) .  It implies that  the turbulent-bore 
model requires the speed of propagation of the toe (and hence that of the entire bore) 
to differ from the characteristic velocity at the toe. The details at the toe are 
compared with the flow-separation model of Longuet-Higgins (1973). 
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FIGURE 2. Definitions. 

It is shown ($5 )  that, written in conservation form, the four differential equations 
have four real characteristic directions and so are fully hyperbolic ; the numerical 
methods used for solution are briefly discussed in $8. 

In  $9 are shown numerical results for some canonical examples. The first is a 
uniform bore on a horizontal bottom. By using as a starting condition the solution 
determined in I under the assumption of steadiness, i t  is shown that this solution 
does propagate without change in form. 

As another example results are given for a bore on a uniformly sloping beach. 
Finally, the propagation velocities are compared with Hibberd & Peregrine's (1979) 

results as presented by Hibberd (1977). 
The run-up which starts when the bore reaches the shoreline corresponds to a stage 

of the motion with no water in front of the bore. Hence the source of the surface 
turbulence vanishes (turbulence being now generated only in the bottom boundary 
layer), and the model reduces to the SWE. This part of the motion was studied 
extensively by Hibberd & Peregrine (1979) and Packwood (1980). In  the present 
paper, computations stop just before the bore arrives a t  the shoreline, but i t  seems 
likely that the different shape and speed of the bore relative to  that found by Hibberd 
will change the run up. 

2. Assumptions and basic equations 
The situation considered in shown in figure 2 .  The water surface is assumed a t  some 

time to be raised a t  the seaward boundary to a certain level and kept a t  that level 
(to produce the bore studied). The motion is described in a fixed (d,z")-frame of 
reference, and the bore is assumed to  propagate into quiescent water with depth R(d) 
( -  is everywhere used for dimensional variables). 

I n  the wedge - 6 < Z < - 71 + a" the horizontal velocities are .ii = .ii,(Z, f) independent 
of z", with .ii = 0 in front of the bore. I n  the region with turbulent flow ( - 6 +a" < Z < f l  
we have .ii(Z, z", t",, where .ii represents the ensemble mean velocity. 

For simplicity we neglect deviations from hydrostatic pressure, which were shown 
in I to have a very small effect on the momentum balance of a bore in a constant 
depth of water. I n  principle, the effect of non-hydrostatic pressure can be included 
by a Boussinesq-type approximation. This, however, would add third-order derivative 
terms to  the equations and complicate the computations without significant im- 
provement in accuracy. 

Consistent with this we also neglect vertical componentJs of the Reynolds stresses, 
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so vertical momentum balance is not considered here. Notice that these assumptions 
are equivalent to assuming that the horizontal lengthscale of the motion is much 
larger than the vertical scale, which is known to be a dominant feature of these 
motions. 

Finally we have neglected the contribution u ' ~  - wI2 from the turbulent normal 
stresses in the horizontal momentum equation. Estimates based on the measurements 
in the literature show that the integral over depth of will a t  most be 10 Yo of the 
contribution from the mean velocities, so that u ' ~ - w ' ~  will only represent a few 
percent correction on the total momentum (see e.g. Stive & Wind 1982). 

Dimensionless variables are introduced by the definitions (using the constant 
velocity c,, and the acceleration of gravity g to define the relevant scales) 

_ _  

_ _  

(x, 2 ,  h )  = (2,  z", A )  gc;2, Q = Qgc;3,\ 

The quantity Q is defined as 

Q(x,  t )  = J:h u dz, d(x, t )  = h(z)  + ~ ( x ,  t ) ,  

so that the equations of conservation of mass and momentum over the total depth 
may be written as 

(2.3) % + Q X  = 0 

and 

respectively, where subscript x or t means partial differentiation with respect to that 
variable. 

Since we have a turbulent region, energy is constantly drained from the mean 
motion, and part of the goal is to describe the turbulence in sufficient detail to account 
for this. 

The energy density E of the mean flow (since u is the mean velocity) per unit of 
horizontal area is 

rn 

and the flux of energy Ef through any vertical section is similarly 

rn 

Finally the loss D of mean energy to turbulence (equal to  minus the production 
of turbulent energy) may be written as 

7 -au 
D(x ,  t )  = I-, u'w' zdz, 
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where UIWl represents the Reynolds stresses, u’ and w’ being the horizontal and 
vertical turbulent velocity fluctuations respectively, and an overbar denoting 
ensemble-averaging . 

It may be worth mentioning here that the expression (2.7) for D represents the 
actual physical situation very well. The general expression for the loss of energy from 
the mean motion due to  the work of turbulent stresses is given by ui a(ui uj)/axj (see 
e.g. Hinze 1959, p. 65, or 1975, p. 72). Since we assume both W G U and i3/i3x << a/az, 
this reduces to u au’w‘laz, which upon integration over depth yields 

71 

__ 

~ __ 
where (u’w’), = 0 by definition. The maximum value of (U’W‘)~  can be shown to be 
of the same order of magnitude as the bed shear stress (the effect of which we have 
neglected). Further, such values only occur in the roller region. It will therefore be 
consistent also to neglect this term. 

Using these quantities the equation for the conservation of mean energy becomes 

E , + E f , x  = D .  (2.8) 

I n  the region behind the front where the turbulence covers only part of the total 
depth, we have for the flow in the lower, constant-velocity, region 

uo, t + uouo, 5 + 7s = 0, (2.9) 

which represents the conservation of momentum in that region. 
Notice that although we have neglected vertical velocities i t  may be shown that 

(2.4) and (2.9) between them include the effect of transfer of horizontal momentum 
also by vertical entrainment of water into the turbulent region. 

The integral of u2 may be eliminated from (2.4) by means of (2.5). Doing so, the 
four equations (2.3), (2.4), (2.8) and (2.9) may be written in the form 

with 
q + & ( V )  = a, 

v = (7, Q, uo, El, 

(2.10) 

G = (0, yh,, 0, D), f 
which represents the four simultaneous partial differential equations in the unknowns 

For reference it may be noticed that if we neglect the effect of turbulence the 
velocity will be uniform over the depth, and D = 0. Then the energy equation and 
one of the momentum equations can be derived from the other two, and the system 
reduces to  the nonlinear shallow-water equations, which (using 7 and uo as variables) 
may be written 

7, Q, uo and E. 

I b + ( U O ( h + T ) ) Z  = 0, U o , t + U o U o , x + y z  = 0. (2.11) 

Hence the system (2.10) represents one possible extension of (2.11) that includes 
the effect of turbulence. 
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3. The turbulent-flow region 

is u’w’ in (2.7) must be related to the mean-flow properties. 

to specify the z-variation of the horizontal velocity 

To solve (2.10) a description is required of the nature of the turbulent flow, that 

The use of a depth-integrated form of the equations also makes it necessary 

~ 

a -  h < z < 7. We use a similarity profile for u ( x ,  z ,  t )  by 
u in the turbulent region 
writing 

where 
z+h-a 

b 

Here us = us(x ,  t )  is u a t  the mean free surface, and b = b(x, t )  is the depth of the 
turbulent region (see figure 2).  We need not specifyf(cr) further until later on. 

For the turbulence we use a simplified k-E model (see also I) where the turbulent 
shear stresses are given by 

(3.2) 

k is the turbulent kinetic energy defined by 
_ _ -  

k = $(u ’~ + u“ + w”) ,  

and e is the dissipation of k.  Following Launder & Spalding (1972), we use the relation 

E - - and hence vt - kib. 

At a fixed point, k shows a significant variation with time as the bore passes. The 
variation of k is described by the transport equation for k ,  the depth-integrated form 
of which was derived in I for a hydraulic jump or steady bore. 

For a propagating bore described in a fixed frame of reference, the corresponding 
equation may be written 

ki 
b ’  

In  this equation we have neglected both horizontal and vertical diffusion of 
turbulence. The vertical diffusion is eliminated essentially by the integration. (For 
a fuller discussion see I, Appendix B.) I n  the horizontal direction the turbulence is 
primarily convected with the fluid, and therefore the horizontal diffusion may also 
be neglected. 

It is convenient to introduce the ratio A 2  between the dissipation and the 
production of k ,  i.e. 

so that (3.3) may be written 

(3.4) 
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Here A = 1 corresponds to local equilibrium in k ,  which from (3.5) means k is constant 
following the water particles. And since particles do not follow the bore this means 
that the decay of the turbulence is not properly represented if A = 1. So to  model 
the above-mentioned time variation of k we must, in principle, have A + 1 .  

I n  fact, in the weak bores considered here, the fluid will be moving at a much lower 
speed than the bore itself. I n  other words, on a gently sloping bottom turbulence is 
generated and dissipated a t  almost the same depth, and the terms in (3.3) may be 
considered independent of the bottom slope. This corresponds to using a la t  = - c a/ax 
in (3.5), and this will (in a frame of reference following the front) transform (3.5) into 
the transport equation for a steady bore or hydraulic jump. Hence we may utilize 
the conclusions derived in I from that equation for the variation of the turbulence. 
In  I it was found that the variation of k derived from the transport equation may 
be described with sufficient accuracy by introducing the simple approximation (here 
in fixed-frame variables) c-uo 

u s  - uo 
A = - - -  (3.6) 

and using k = Qk A'(u, - u,) '~ ' (cT) ,  (3-7) 

where Qk is an empirical constant. 
By substitution of (3.7) we may write 

Vt = Q , ~ ( u , - u , ) b f ' ( ~ ) ,  (3.8) 

where Q, is another empirical constant. 
For clarity, we emphasize that in using (3.6) for A and (3.2) for -u'w' we do not 

need to specify 52, or to determine E .  I n  this sense and because we use the depth- 
integrated equations, the model is a simplified k-E model. On the other hand, (3.6) 
does give the right variation of the balance between production and dissipation of 
turbulence (see I for further discussion). 

Substitution of (3.1) and (3.2) into the expression (2.6) for loss of mean energy yields 

D = -52,X,, A ( U ~ - - ~ , ) ~ , )  

__ 

S,, = f3(cr)dcr. s,' 
(3.10) 

4. Computational procedure 
When (2.10) is solved numerically, we get Y = (7, Q ,  E ,  u,) a t  each time step. But 

to proceed from one time step to the next we must express Ef and D in terms of v, 
which means eliminating particularly b and u,-uo from the equations. I n  the 
computations this is done by the following procedure. 

From (2.2) with (3.1) substituted we define 

8, = f"(cr) dcr, n = 1 ,2 ,3 ,  s,' 

Furthermore, use of (3.1) and (4.1 b )  yields 

rv 

(4.1 a )  

(4.1 b,  c) 

I = U' dz = U: d + 2u,S, $ + $,(u, - u0) #, (4.2) 
2 - J1, 
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or 
I ,  - U: d - 2u0X1 9 

us-uo = 
8 2  9 (4 .3)  

But I ,  can also be expressed in terms of r-components by (2 .5) :  

I ,  = 2E-7 , .  (4 .4)  

Hence the computational procedure is to calculate d = h + r  and q5 from (4.1 c ) ,  and 
I ,  from (4 .4) .  Then ( 4 . 3 )  yields us-uo, and (4 .1b)  gives b. With us-uo and b 
determined, (3.10) gives D ,  and Ef can be found from (2 .6)  by substituting (3.1) into 
the integral, which may then be written (using (4.1)) as 

9 
= S_, u3 dz = u; d + 3u; + 3u0(us- uo) $8, + (us - uo)2 4 ~ ~ .  (4 .5)  

Equation (4.5) can be evaluated from the previous results, after which (2 .6)  gives E,. 
To summarize, the description of the flow consists of the four simultaneous 

differential equations (2 .10) .  The additional relationships described above are required 
to  eliminate the parameters brought in particularly by the turbulence model. 

5. Analysis of the characteristics 
It may be shown that for the constants used in the computations this system is 

a fully hyperbolic system, although this can only be done analytically at the toe of 
the turbulent front (see Q 6 ) .  

To proceed, we change the form of (2.10) by writing 

in which A ,  = At*( J{) is the Jacobian matrix of F. Thus (2.10) becomes 

and from (2.10) we find 
&, t+A, ,  5,z = Ci, 

Using the definition (4 .5) ,  we may write (2.6) as 

E, = $ 1 3  + TQ, 

which means that 
i ar3 

Q+-- 
2 a7 
i ar3 r+-- 
2 aQ 

1 ar, 
2 auo 
1 ar3 

-~ 

-- I 2 aE 

(5 .4)  
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The derivatives of I ,  can be determined from (4 .3)  and from (4.5) using (4.1 b ) ,  which 
yield a(us - uo)/a V and 1 (5.6) m=(-uo’ l .  -(v+h),O 

respectively. Substitution into the differentiated version of (4.5) then gives 

S 
= 3 u 0 + 2 ( u s - u 0 ) ~  

aE 4 J 
The characteristic directions are the four eigenvalues of Aij. Since the equations 

are nonlinear, these directions depend on the solution, and hence vary with x and t .  

6. Conditions at the toe of the front 
The toe of the turbulent front is characterized by a discontinuity in some of the 

variables or their derivatives. This is where the dissipation starts, and D itself 
experiences a discontinuity at the toe of the front. This is associated with the 
initiation and growth of the turbulent region (ab/ax and ablat  are discontinuous). 
Hence this point is equivalent to a shock front in the ordinary shallow-water 
equations. 

In the following we analyse the flow properties in the neighbourhood of the toe 
in more detail, using an extension of a method suggested by Whitham (1974, $5.6) .  

In  doing so it turns out that the discontinuity of D at the toe is crucial, as it 
changes the nature of the equations. The physical arguments for this discontinuity 
will be discussed in § 7 .  

To extract the required information, we consider the flow from a frame of reference 
moving with the speed c of the toe of the front. Thus we introduce (6, T)-coordinates 
defined by 

(6.1) 

(6 .2)  

with c = c(T) .  
In the case of a bore moving into quiescent water we have in front of the bore (5  > 0) 

K = &+ = const (5  > 0). (6 .3)  

Behind the toe we expand the components of Binto a Taylor series in terms of 
< (a procedure formalizing the limiting process a t  the toe) : 

K ( 6 , T )  = V ~ ) ( 0 , T ) + { V ~ 1 ) ( 0 , T ) + ~ [ 2 V $ 2 ) ( 0 , T ) +  ... ( 5  < O),] 

where 
(6.4) i 

For physical reasons &(y, Q, uo, E )  must be continuous a t  5 = 0, so that 

K(0, T) = &+- V,!’)(O, T )  = &+. (6.5) 
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Atj ,  on the other hand, depends on us-uo (see (5.3) and (5.7)),  which is discontinuous. 
In the expansion for A ,  we get 

where 

For G, we get 

When the expansions are substituted into (5.2) and terms collected corresponding 

: (A!’?) a3 - c&. 83 .) g!l) 3 = G!O) % >  (6.10) 

tJo equal powers of 6, we get for the first two orders of approximation 

Here (6.10) represents a system of algebraic equations for Vjl), the first-order 
derivatives of 5 at the toe. I n  the special case considered by Whitham, Gk0) = 0, 
corresponding to Gi continuous a t  the toe (as e.g. in the nonlinear shallow-water 
equations). Obviously this implies that  solutions for Vjl) only exist provided that 

IAfj”-c&t.jJ = 0, (6.12) 

i.e. c is one of the eigenvalues of A!?). Then. however, there are infinitely many linearly 
dependent solutions for V$*), which may be written crrJ3, where L, is the right 
eigenvector of Aij’). 

Since Gio) = 0 implies us-uo = 0 according to (3.10), and g = 0 implies & = 0 in 
A$‘), the solutions to (6.12) correspond to solutions to the linearized version of (5.2) 
(i.e. the equations corresponding to the wave equation in the shallow-water case). 

Multiplying (6.1 1 )  by the left eigenvector li of Ai, and utilizing that c is given by 
(6.12), Whitham eliminates Vj2)  from (6.11), which yields an equation of the form 

d a  
d T  

liLi-+aa,a+a2cr2 = 0. (6.13) 

This is a Bernoulli equation describing the rate a t  which the derivatives Vil) a t  the 
toe change as the bore propagates. A similar equation was derived by a slightly 
different approach by Jeffrey & Mvungi (1980). Notice that, if (5.2) is truly linear, 
i.e. A, is independent of <, then (6.11) yields dVi1)/dT = 0, i.e. all solutions 
propagate without change of shape (in accordance with the abovementioned wave 
equation for the shallow-water case). 

I n  the present model, however, we find 

Gl0) = (0 ,0 ,  0, Do)), (6.14) 
where D(O) is the dissipation a t  6 = 0-. D(O) as determined from (3.10) is shown below 
to be non-zero. 

Hence solutions to  (6.10) only exist provided that c differs from the eigenvalues 
of A . .  (which are a t  the same time the slope of the characteristics in the (2, t)-plane). 
Physically, this means that the toe propagates a t  a speed c that  depends on the rate 
of change of 7 ,  Q ,  u, and E immediately behind the bore toe and is different from the 
characteristic speed. On the other hand, this implies that for each value of c satisfying 
this condition there is one set of solutions for Vj’). 

a? 
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In  more detail, the case we consider corresponds to  

(6.15) 

which substituted into (5.7) and (5.3) yields 

-C 1 0 0 
h - C  0 2 

(Ap-c&.)  = 1 0 -c 0 
S 

2(us - u0)(O) 3- c 8 3  ;h - (us - uo)('))2 

2 s1 4 8 2  

0 - _ _  1 8 3  (us - u 0 ) ( O ) 2  

(6.16) 
23 i 

where ( u , - ~ ~ ) ( ~ )  is us-uD taken a t  5 = 0, and S ,  is given by (4.la). 

may be solved directly to yield 
When this is used in (6.10) together with (6.14), the first three equations of (6.10) 

The last equation of (6.10) then gives 

Together these equations express Vil) in terms of c, but may also be considered as 
relations giving c in terms of T,J (~ )  or other components of Vil). 

This is in fact how the results are used in the computations. It turns out that  the 
computations are stable if c is determined from (6.17) and unstable if (6.20) is used. 

Notice that the solution found for Vil) is a locally constant-depth solution as it 
does not depend explicitly on the bed slope h,. 

The second approximation given by (6.10) shows that (since Vl2) cannot be 
eliminated as in the homogeneous case) the rate at which Vil) changes with time 
depends not only on the first derivatives of &, but also on the curvature i'i2) of V,. 
Hence determination from (6.1 1 )  and higher-order approximations of the time 
variation of V, at the toe becomes rather complicated in the case GiO) + 0. 

Equation (6.11) and the higher-order equations may, however, also be considered 
from a different point of view. Since the turbulence is stabilizing the front, the 
possibility exists of constant-form solutions for the front; or, more likely, solutions 
showing similarity (in the neighbourhood of the toe) in suitably chosen variables as 
the front propagates towards the shore. Such a solution would be characterized by 
dn/dTn = 0 or a value determined by the similarity relations. Thus (6.11) (and 
higher-order approximations) turn into algebraic equations in Vn) ,  which are 
equations for the Taylor coefficients of a solution deforming to  fit the similarity 
relations. 

The value of us-uo a t  the toe may be determined from the equations in 94 by 
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Taylor expansion of all variables. Thus (4.lc), (4.3) and (4.4) yield with (6.17)-(6.19) 
substituted 

S 
so that 

Substitution of this into (6.20) then gives 

(us -u0)(O) = C L  . 
8 2  

with 

(6.21) 

(6.22) 

(6.23) 

I n  fact, we may also a t  the toe determine the eigenvalues of A ,  (that is of A1,O)) 
explicitly. We substitute (6.22) into A$) and set det (A{;) -A,  S i j )  = 0, which yields 

(6.24) 

This confirms analytically that two of the eigenvalues behind the toe are equal to 
the eigenvalues in the inviscid flow in front of the toe. 

Figure 3 shows in an (z, t)-diagram the position a t  the front of all four eigenvalues. 
The case is c/hi = 2 andf(cr) equal to the cubic used in $9. c is here the velocity of 
propagation of the toe of the bore (see $6). Notice that, just behind the toe, two of 
the eigenvalues equal the two corresponding to the shallow-water equation, whereas 
the other two (the numerically largest) exist only behind the toe. Notice also that 
the maximum value of the largest eigenvalue is a t  the toe. 

Figure 4 shows the value of the corresponding characteristic velocities for the same 
data as in figure 3. For reference, values of 7 and us-uo are shown as well. For an 
x/h-value around 18, the turbulence reaches the bottom and one of the equations 
becomes superfluous. This does represent a discontinuity in the description, and in 
figure 4 this is reflected by the termination of one of the characteristics. 

We see that all eigenvalues are real, which indicates the hyperbolic nature of the 
system. It should be mentioned, however, that  during the computations i t  was found 
that for the case ff ,  = 2 two of the four eigenvalues became complex conjugate for 
an intermediate region of 2-values if A 2 1.85, A being defined by (9.1). No physical 
interpretation has been found for this. 

we have (u, uo)+uoo, where (see e.g. Lighthill 1978) For z/h+ 

For the case in figure 4 this means u, = 1.156. The eigenvalues of A similarly become 

2.696, 
(0.384, 

A, = u, = 1.156, 

which are the asymptotic values shown in figure 4. 
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FIGURE 3. The characteristic directions at the toe of the turbulent front. The 
numbers correspond to the case F, = c/hi = 2, andf(g) determined by (9.1). 

FIQURE 4. The variation with s of the eigenvalues of the matrix Aij, 7 and us-uo for the same 
case as in figure 3. The depth is constant, and the arrow shows where turbulence reaches the bottom. 

This figure also shows that the largest characteristic value A, = u, +dm, which a t  
infinity corresponds to the value in ordinary shocks, is not the one that a t  the toe 
is equivalent to a value in front of the toe. 

It is also interesting to notice from figure 4 that we have quite appreciable 
differences between the surface and bottom velocities us - uo even a t  large values 
of x. This may be interpreted as a need for enhancing the momentum contribution in 
the momentum equation. This again may be combined with the observation described 
in I that  for large x the theoretical surface elevation is somewhat smaller than the 
measured values, which corresponds to  a momentum deficit. The accumulative effect 
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for large x of omitting the bottom boundary layer also influences this in both 
the energy and the momentum budgets. 

We finally emphasize that the results obtained so far in this section are independent 
of the turbulence model (that is the value of D(O)) and of the shape off(a). The only 
assumptions required are that there i s  a similarity profile f ( c r )  and that D is 
discontinuous a t  the toe. Hence we must realize that these two assumptions in fact 
determine the principal properties a t  the toe. These assumptions are further 
examined in § 7 .  

7. Discussion of the flow near the toe 
The flow situation in the neighbourhood of the toe is actually that of a flow 

separation a t  a free surface analysed by Longuet-Higgins (1973) (hereinafter 
designated 11). The result ( 6 . 2 2 ) ,  however, shows that the present model differs signi- 
ficantly from 11. Equation (6.22) predicts a finite value of us -uo a t  the toe, and since 
we shall always find 8, > S, we get 

(us-u0)(O) > c (7 .1)  

against (us-u0)(O) = 0 in 11. Figure 5 depicts more explicitly the differences between 
the two models. The flow is again described in a reference frame moving with the 
toe of the front. 

A primary difference stems from the assumption in I1 of a stagnation point a t  the 
toe with the velocity tending to  zero both in the upper (turbulent) and in the lower 
flow region. I n  addition, the dividing streamline (defined as the streamline above 
which j u d z  = 0) in I1 forms the lower limit of the turbulent region (with T -+ 0). The 
present model lets the turbulence extend below the dividing streamline to get T + O  
a t  the lower edge and allow for mass entrainment into the turbulent region. The latter 
difference, however, is of minor importance relative to the former. 

From a local point of view, the assumption of a stagnation point is a very natural 
one, because the finite value of us-uo of the present model invariably leads to  
au/az --f 00 as the thickness b of the turbulent region decreases towards zero a t  the 
toe. The existence of a stagnation point in the lower region must be an exception, 
however, since the flow in front of the toe is a potential flow. Hence, in a fixed frame 
of reference, t o  create a water-particle velocity equal to the speed c of propagation 
of the front (to which the existence of a stagnation point corresponds) would for a 
bore propagating on constant depth require accelerations corresponding to a rise in 
water level equal to c2/2g  above the level with zero particle velocity in that reference 
frame. This means that in a bore the toe would always be preceded by such a rise 
in water level, which is not possible. 

In  fact, from the small to moderate rise in water level in front of the turbulent 
bores in the photos of figure 6 it  may be inferred that the velocity uo immediately 
ahead of the toe is usually very small (in a fixed frame of reference). Even in the case 
of a spilling breaker in figure 6 ( c )  we get uo G c.  Notice that the present model totally 
neglects this rise in water level, which in the case of a bore propagating into quiescent 
water will be very small. On the other hand, the surface velocity us in the turbulent 
front just behind the toe must be larger than (or a t  least equal to) c to prevent the 
turbulent region from being left behind by the propagating bore. 

Hence from these considerations i t  is concluded that a t  the toe of the turbulent 
front the value of us - uo is (usually) close to  c ,  and in any case us - uo will be nonzero 
(as suggested in the present model). 
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FIGIJRE 5. Two models for the flow pattern near the toe : 
( a )  Longuet-Higgins (1973) ; ( b )  present theory. 

If we now further assume u ( z )  to be a continuous function of z ,  a non-zero value 
of u,-u,, implies au/az+m towards the toe, which (even in a laminar flow) would 
cause the shear stress 7,, to increase similarly. This clearly cannot be consistent with 
the nearly constant value of us near the toe, which suggests that even i3rZ2/az remains 
bounded. 

I n  the present model r,, is kept, finite by the form (3.8) assumed for vt. Notice that 
for the flow in the turbulent wedge (m denoting the moving reference frame) we get 

Qb,* = Jbumdz = Ib(u-c)dz z b ( ~ , - u ~ ) ~ S ~ + b ( ~ , - c ) + 0  as g + O ,  (7.2) 

which shows that the finite velocity us is associated with a vanishing amount of water, 
which is also consistent with a bounded value of the shear stress. 

Finally we notice that the existence of a non-zero value of us - uo a t  the toe justifies 
the assumption in the last section that Do) has a non-zero finite value immediately 
behind the toe. This can be seen by utilizing the abovementioned fact that ar$)/az 
and hence for physical reasons must be finite, which substituted into (2.7) yields 

(7.3) 

It should be emphasized that the above conclusions are independent of the shape 
f(a) of the velocity profile. It is not even utilized that f(a) is the same for all 2 
(similarity). This implies that, although the quantitative relations derived in $6  are 
based on the similarity assumption, the discontinuity of D(O) a t  the toe is not. 
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FIQURE 6. Three photos of weak bores showing the extent of the turbulent region. The photos were 
obtained by the following method described by Peregrine & Svendsen (1978). In a small closed-circuit 
flume a small amount of detergent is added to the water. The flume is operated for a while during 
which the pump creates numerous small bubbles only a fraction of a millimetre in diameter (rising 
speed less than 1 mm/s), and giving the water a milky colour. The pump is stopped and the bubbles 
allowed to rise to the surface. When the water has cleared, a thin layer of the small bubbles remains 
on the surface. When, finally, we send a bore through the flume, these bubbles are entrained into 
the turbulent layer and give the white colouring seen on the photos. 

8. Numerical solution 
The numerical scheme used in the computations is a two-step Lax-Wendroff 

scheme (see e.g. Richtmeyer & Morton 1967) which is of second-order accuracy. With 
n denoting the number of time steps each of length At, and i referring to computation 
points in the x-direction with spacing Ax, we use for (2.10) in the first of the two steps 

The second step becomes 

Since a primary point of interest is to analyse the effect of adding turbulence to 
a bore, part of the computations were made with a bore propagating on a horizontal 
bottom. 

In the computations with a beach, the shoreward boundary was represented by 
a very shallow shelf to avoid the entirely different situation of a front propagating 
on dry land. Hence this problem was solved essentially as an initial-value problem. 

In all cases the solution for a turbulent bore of permanent form derived in I was 
used as starting condition seaward of the slope. 

A significant difference from the dissipative Lax-Wendroff solution of the ordinary 
shallow-water equations is the discontinuity represented by the toe of the bore. At 
this point the model shifts from the ordinary shallow-water equations (i.e. (2.11)), 
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describing the non-turbulent flow in front of the bore, to the four-equation system 
derived above describing the flow in the bore itself. Hence, to determine the 
propagation of the bore, we must keep track of the position of the toe in each time 
step. The discountinuous derivatives of the dependent variables also require a 
one-sided difference scheme at that point. 

The propagation of the toe is determined by the expression 

Here the speed of propagation c is given by 

in which i is the first grid point behind the toe. Equation (8.4) is equivalent to (6.17), 
and hence consistent with the mathematical formulation of the problem. Physically, 
(8.4) implies that the instantaneous speed of propagation of the toe is determined 
by the flow immediately behind the toe. And, since these flow conditions are over a 
longer time sequence influenced by the flow structure in the entire bore, the speed 
of propagation of the toe, and hence of the bore itself, is in fact influenced by all points 
behind the toe. Mathematically, the corresponding information is carried to the toe 
by the fastest of the characteristics behind the front (see figure 4), which has 
dxldt > c. 

9. Numerical results and discussions 
To obtain numerical results with the model, we must choose the velocity profile 

ffa) defined by (3.1) and the turbulence constant 52, (3.8). Following I, we use for 
f(a) the cubic 

f(a) = - ~ a 3 + ( 1 + 4 ~ 2  (0 < a < I ) ,  (9.1) 

0.03s; with A = 1.4, and we also take 
0, = - 

SIO 8; ’ 
as found in I. 

Computations for a bore on a horizontal bottom verify the stability of the solution 
found in I for that case. These computations also show the ability of the program 
to propagate such a bore. Figure 7 shows a comparison between the steady profile 
from I with Ff = 4 used as a boundary condition and the profile obtained after this 
profile has propagated 25 times the water depth. 

As mentioned in 5 1, we see that the turbulence is stabilizing the profile in spite 
of the static pressure assumption. That assumption also excludes the possibility that 
weak bores develop into undular bores. 

It may also be noticed that since we have explicitly modelled the loss of energy 
due to turbulence production it is important to minimize any additional numerical 
dissipation. This has been done by using a very fine grid (typically Ax = 0.1 h). The 
numerical dissipation, which is largest immediately behind the toe where the largest 
curvatures occur, tends to decrease the surface elevation, i.e. to flatten the profile. 
However, in figure 7 the numerical solution has been compared with a hydraulic-jump 
solution which does not contain any numerical dissipation. Clearly, the two solutions 
are nearly identical, indicating that the numerical dissipation is negligible in the 
present run. Additional evidence of this is that  the results do not change by further 
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FIGURE 7 .  The surface profile of a bore propagating on a horizontal bottom; F; = 4:  ~ , starting 
profile determined from I ;  2, computed values after 25 water depths of propagation. 

FIGURE 8. Sketch of the sloping beach. 

significant reductions of Ax,  which would have been the case had the numerical 
dissipation been noticeable. 

The computation with a constant depth also shows that except for minor deviations 
a t  the start (< 0.5 76’0) the phase velocity equals the theoretical value of 2 within a 
fraction of 1 %. The accuracy, however, depends somewhat on the Froude number, 
the smaller Froude numbers used below requiring Ax as small as 0.05h0. Also the 
Courant number C, is of some importance, the best results being obtained with 
C, = 0.5, based on the front speed. The value of At is determined accordingly at each 
time step. 

The second group of computations were performed with a bore on a sloping bottom. 
Figure 8 shows the arrangement chosen, and the computations started at the edge 
of the slope a t  x = xSt. The bore is assumed to have attained the stable shape described 
above in the constant-depth region outside the slope. 

Since there are three positive characteristics (figure 3) ,  we can specify three 
boundary conditions a t  x = 0. The time variations of 7, E and uo have been used from 
the steady solution. As we do not know the Riemann variables associated with the 
system of characteristics, the variation of Q has been determined from the other three 
by assuming constant form a t  x = 0. 

I n  figure 9 is shown a comparison between the horizontal-bottom profile of figure 7 
(used as input) and the profile when the toe of the front was a t  h = 0.0897. xSt is 
18 and h, is 0.0289. Clearly the front is less steep than the input profile, where one 
would perhaps expect the opposite. 

An explanation for this may be found by looking a t  the front speed c (figure 10). 
c is (for this particular starting value of F,) nearly constant, independent of the 
significant depth variation, which means that the value of C2/gh (where h is the depth 
a t  the toe of the front) is increasing rapidly as the bore approaches the shoreline. 

4 F L M  148 



92 

A 
. D  - 

I I I 1 I I I I I I 

- ho -/---- . 

- 1.0- 

- 

(x - -Xf ) lhO - 

1 2 3 4 5 6 7 8 9 10 - , 1 

I .  A .  Svendsen and P. A .  Madsen 

(x -x,)lho 30 20 10 
I I I 

I I I I 

2.c 

1.95 

1.9( 

C 

FIQURE 10. Variation of the propagation speed for a bore on the beach; Ff = 4. 

Hence, according to (6.23), we should expect y(l) = yz, front to decrease, which is just 
what happens. 

The value of y(l) satisfying (6.23) may not be determined from the computation 
points by a simple backward difference because in this context the curvature a t  the 
front is not negligible. Computations with due regard being paid to this effect show, 
however, that the true value of y(l) corresponds to (6.23) to within 1-2 yo. I n  other 
words, for this particular example the movement of the front corresponds very closely 
to  the first approximation derived in $6. This may not be true for steeper bottom 
slopes, however. 

For values of c larger than ,(2-3) (gh,,); small variations of y(l)  in (6.23) imply 
appreciable variations in c .  This in combination with the sensitivity of y(l) to the 
curvature of 7 indicates that  (6.23) is unsuitable for determination of the front speed 
from computed values of ~ ( l ) ,  as has already been mentioned in $6. 

Also, another mechanism may contribute to  this. If one thinks of a small positive 
perturbation being added to the toe speed, then this would for a short period cause 
the toe t o  move faster than the rest of the bore. But that would for continuity reasons 
decrease the surface slope y(l) just behind the toe, and so by virtue of (6.23) tend to 
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FIGURE 11. Four characteristic positions of the bore in figure 9, showing both surface profile and 
lower boundary of the turbulent region. The last position is at h/ho = 0.0897. 

stabilize the higher propagation speed rather than damp it. Apparently, there is in 
this mechanism a possibility of an uncontrolled growth of c .  

On the other hand, such a growth is apparently counteracted in (6.17) if &(l) 

decreases more than ~ ( l )  when the toe moves faster. 
Finally, i t  should be mentioned that physically (6.17) represents the continuity of 

mass, whereas (6.23) in essence accounts for the energy dissipation, which again 
indicates that  c should be determined from (6.17). 

Two cases for F2 = 4 and 1.88 are shown in figures 11 and 12. In  addition to the 
surface profile, the figures also show the extent of the turbulent region for the four 
different positions of the bore on its way towards the shoreline. The turbulent region 
is particularly seen to grow in thickness right behind the front as the depth increases, 
i.e. as the local bore strength increases, and eventually at sufficiently small depth the 
turbulence spreads over the whole depth from just behind the front. 

Another characteristic feature is that the height of the front stays nearly constant 
even though the steepness near the toe decreases as figure 10 showed. 

It may also be noticed that, as the bore propagates, the turbulence at a given 
x-position slowly spreads towards the bottom, a feature of the computations which 
is quite in accordance with physical observations. The small ‘bubble ’ on the bottom 
shows a short interval where the equations require turbulence to cover less than the 
full depth. 

From computations with larger values of Ax it  was found that the surface profile 
is quite insensitive to such changes. The most variable quantity in the results is b, 
the height of the turbulent region. For the value of 0.05 for A x  used in these 
computations only small changes in b will occur by an increase of 50 % in Ax.  

Computations have also been made for comparison with the dissipative Lax- 
Wendroff scheme used by Hibberd (1977) and Hibberd & Peregrine (1979). A direct 
comparison between the profiles is not really informative, however. 

4-2 
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FIQURE 12. Four characteristic positions equivalent to figure 1 I for ff f = 1.88. 

One reason is that using the Lax-Wendroff scheme the length of the front is 
artificially fixed to cover 4-5 computation points, so that it is determined by the 
choice of Ax. Hence the front shape is unphysical in such computations. Another 
reason is that the boundary conditions a t  the seaward boundary are different in the 
two investigations. 

Hibberd & Peregrine use a boundary condition that in a linear approximation 
absorbs the (small) reflection from the shore, whereas in the present investigation the 
constant-form assumption mentioned above implies reflection with a sign shift of the 
(weak) outgoing waves. 

Since the latter difference has only a minor effect on the shape of the fronts, 
however, it is relevant to compare the front speeds. Figure 13 shows such a 
comparison for f2 = 1.88. The propagation velocity for the Lax-Wendroff method 
has been obtained from Hibberd (1977) assuming a constant form of the front so that 
c = ud/q. Simultaneous values of u, d and 7 at the crest immediately behind the front 
have been used. 

The Hibberd bore is seen to propagate at a speed approximately equal to that of 
a bore on a constant depth having the same height as the front height (determined 
by estimating the average of the undulations created by the numerical scheme) and 
at the depth of the front (the difference being within the range of uncertainty of the 
results available). 

On the other hand, our front toe starts with nearly the same speed as the Hibberd 
bore (actually slightly less because of the initial deformation of the Hibberd bore), 
but as the front becomes less and less steep the toe moves increasingly faster than 
the Hibberd bore, with a value about 10 yo higher being typical near the shoreline. 
For both methods, however, the propagation velocity decreases with the decreasing 
depth, in which sense this case differs from the results for ff; = 4 (see figure 10). 

The propagation speeds larger than the bore speed can only be associated with an 
enhancement (relative to a stable, constant depth bore) of the momentum flux behind 
the toe due to the non-uniform velocity profiles. No measurements are known to the 
authors for bores, but a more detailed discussion of the mechanisms is given in 
Svendsen, Madsen & Buhr Hansen (1978). 
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(X -x,,)lho 
FIGURE 13. The propagation velocities for the case FT = 1.88: 0 ,  derived from Hibberd’s 
results; 0, a bore with height equal to the front height in Hibberd’s computations; x ,  our 
computations. 

10. Concluding remarks 
The aim of the reported work has been to investigate how a turbulent bore develops 

on a beach. 
The turbulence is modelled the same way as in Madsen & Svendsen (1983) and the 

same assumptions are used for the velocity and pressure distributions. The equations, 
however, in this propagation model are simultaneous partial differential equations 
of hyperbolic type (instead of the primary algebraic equations in Madsen & 
Svendsen ). 

The most important detail of the flow is at  the toe of the turbulent front, and it 
is found that the description gives qualitatively the correct variation of the crucial 
physical quantities. A numerical check using the steady-state solution found in 
Madsen & Svendsen as input also shows that on a constant depth this solution does 
propagate without change of form. 

Finally, results are given for two bores climbing a beach, and the speed of 
propagation is compared with similar results obtained by Hibberd & Peregrine using 
a dissipative Lax-Wendroff scheme. It is found that the latter moves at a somewhat 
lower speed, the difference increasing towards the shoreline. 

Since more details of the flow are determined, the present method will computa- 
tionally be less economical than the Lax-Wendroff scheme for the shallow-water 
equations. On the other hand, no attempt has been made here to optimize the 
numerical computations, and often we have chosen smaller grid sizes for the results 
than necessary. And with modern computers the computation effort required is rather 
modest. 
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